The Variational Calculus on Time Scales
نویسنده
چکیده
Abstract. The discrete, the quantum, and the continuous calculus of variations, have been recently unified and extended by using the theory of time scales. Such unification and extension is, however, not unique, and two approaches are followed in the literature: one dealing with minimization of delta integrals; the other dealing with minimization of nabla integrals. Here we review a more general approach to the calculus of variations on time scales that allows to obtain both delta and nabla results as particular cases.
منابع مشابه
Necessary optimality conditions for the calculus of variations on time scales
We study more general variational problems on time scales. Previous results are generalized by proving necessary optimality conditions for (i) variational problems involving delta derivatives of more than the first order, and (ii) problems of the calculus of variations with delta-differential side conditions (Lagrange problem of the calculus of variations on time scales).
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کاملThe Second Euler-Lagrange Equation of Variational Calculus on Time Scales
The fundamental problem of the calculus of variations on time scales concerns the minimization of a deltaintegral over all trajectories satisfying given boundary conditions. In this paper we prove the second Euler-Lagrange necessary optimality condition for optimal trajectories of variational problems on time scales. As an example of application of the main result, we give an alternative and si...
متن کاملHartley Series Direct Method for Variational Problems
The computational method based on using the operational matrix of anorthogonal function for solving variational problems is computeroriented. In this approach, a truncated Hartley series together withthe operational matrix of integration and integration of the crossproduct of two cas vectors are used for finding the solution ofvariational problems. Two illustrative...
متن کاملIntegral Inequalities and Their Applications to the Calculus of Variations on Time Scales
We discuss the use of inequalities to obtain the solution of certain variational problems on time scales.
متن کامل